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Section 3.6 - Exponential Growth and Decay

Compound Interest

If a savings account earns an annual interest rate of r (expressed as a decimal, not a
percentage), then the future value of the account after t years with an initial investment of
P dollars would be

A(t) = P(1 + r)t .

More typically, you will have a compounding period of less than a year, such as monthly or
quarterly. If the compounding happens n times per year (e.g., n = 4 for quarterly
compounding), then the interest rate per quarter will be given by

r
n

, where r is still given
as a yearly rate. In this case, the future value after t years will be

A(t) = P
(

1 +
r
n

)nt
.
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Section 3.6 - Exponential Growth and Decay

Compounding Continuously

It is also possible to increase the compounding to happen at every instant of time, which
would correspond to taking the limit as n→∞.

lim
n→∞

A(t) = lim
n→∞

P
(

1 +
r
n

)nt

= lim
n→∞

P
[(

1 +
r
n

)n/r
]rt

= P
[
lim

n→∞

(
1 +

r
n

)n/r
]rt

= P
[
lim

x→∞

(
1 +

1
x

)x]rt

= Pert
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Section 3.6 - Exponential Growth and Decay

Example

Example

If $3000 is invested at 5% interest, find the value of the investment if interest is
compounded

1 annually
2 quarterly
3 monthly
4 continuously

How long will it take for the value of the investment to double if the interest is compounded
quarterly?

Math 130 - Essentials of Calculus Exponential and Logistic Models 26 March 2021 4 / 12



Section 3.6 - Exponential Growth and Decay

Exponential Growth

In the situation where a quantity changes at a constant percentage rate, we can model
the situation with a differential equation:

A′(t) = k · A(t)

which says that the rate of change in A is equal to k times A.

The solution to this
differential equation is given by

A(t) = Cekt

where C is the initial value or initial quantity. k represents the relative growth rate.
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Section 3.6 - Exponential Growth and Decay

Exponential Growth

Example

A bacteria culture initially contains 100 cells and grows at a rate proportional to its size.
After an hour, the population has increased to 420.

1 Find the relative growth rate.
2 Find an expression for the number of bacteria after t hours.
3 Find the number of bacteria after three hours.
4 Find the rate of growth after three hours.
5 When will the population reach 10,000?
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Section 3.6 - Exponential Growth and Decay

Now You Try It!

Example

The half-life of the radioactive material cesium-137 is 30 years. Suppose we have a
100mg sample.

1 Find the relative growth rate.
2 Write a formula that gives the mass that remains after t years.
3 How much of the sample remains after 100 years?
4 After how long will only 1mg remain?
5 At what rate is the mass decreasing after 100 years?
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Section 3.6 - Exponential Growth and Decay

Logistic Growth

Sometimes a population increases exponentially at first, but then levels off when
approaching its maximum population, called the carrying capacity, that the environmental
conditions can sustain.

The model for a situation like this is called a logistic function which
has the form

P(t) =
M

1 + Ae−kt

where M is the carrying capacity, t is time, k is a constant, and A is a constant given by

A =
M − P0

P0

where P0 is the initial population.
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Section 3.6 - Exponential Growth and Decay

Logistic Growth

Here is the graph of a typical logistic function
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Section 3.6 - Exponential Growth and Decay

Logistic Growth

Logistic growth also satisfies a differential equation given by

P ′(t) = kP(t)
(

1− P(t)
M

)
.

The meaning of this equation is that the rate of change of the population is proportional to
the product of the population and how far the population is from the carrying capacity.

Looking at the equation, we can see that P ′(t) is close to zero when P(t) is close to zero,
or P(t) is close to M.
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Section 3.6 - Exponential Growth and Decay

Example

Example

A lake is stocked with 1000 fish and the fish population is expected to follow the model

P(t) =
17,000

1 + 16e−0.7t

where t is the time elapsed, in years.
1 What is the carrying capacity?
2 What is the fish population after 2.5 years?
3 How many years are required for the fish population to reach 12,000?
4 What is the growth rate of the fish population after five years?

Math 130 - Essentials of Calculus Exponential and Logistic Models 26 March 2021 11 / 12



Section 3.6 - Exponential Growth and Decay

Example

Example

The number of mountain lions in a wildlife preserve is modeled by

P(t) =
1680

1 + 4.2e−0.11t

where t is the number of years after January 1, 2010.
1 What is the carrying capacity? How many mountain lions are there on January 1,

2010?
2 According to the model, what is the population after 15 years?
3 When does the model predict that the mountain lion population will reach 1500?
4 Compute and interpret P ′(12).
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